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ABSTRACT: In this paper, we introduce 

and examine the concept of lacunary d−statistical 

α−convergence and lacunary d−statistical 

α−boundedness and establish the realtion 

between them.  Finally, we give a general 

description of inclusion between two arbitrary 

lacunary methods of d−statistical 

α−convergence. 

 

I. INTRODUCTION AND 

PRELIMINARIES 
The idea of statistical convergence 

which is, in fact, a generalization of the usual 

notion of con- vergence was introduced by Fast 

[15] and Steinhaus [28] independently in the 

same year 1951 and since then several 

generalizations and applications of this concept 

have been investigated by various authors 

namely Bhardwaj et al. ([1], [2], [3], [4],[5]), 

Connor [10], Et [11], Et et al.([12], [13], [14]), 

Fridy [18], Fridy and Orhan [19], Mursaleen and 

Mohiuddine [23], Mursaleen [24], Rath and 

Tripathy [25], Salat [27], and many others. 

The idea of statistical convergence depends 

upon the density of subsets of the set N of 

natural numbers. The natural density δ(K) of a 

subset K of the set N of natural numbers is 

defined by 

 

 
In this case we write S lim xk = L. Since lim xk = L implies S  lim xk = L, statistical 

convergence may be considered as a regular summability method. The set of all statistically convergent 

sequences is denoted by S. 

Following  Freedman  et  al.   [17],  by  a  lacunary  sequence  θ  =  {kr}
∞
r=0,  where  k0  =  0,  we  

shall mean an increasing sequence of non-negative integers with kr − kr−1 → ∞ as r → ∞. The intervals 

determined by θ will be denoted by Ir = (kr−1, kr], and we let hr = kr − kr−1. Sums of the form 
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≤ 

r→∞ hr 

Fridy and Orhan [19] introduced and studied a 

concept of convergence, called lacunary statistical 

convergence, that is related to statistical 

convergence in the same way that Nθ is related 

to |ζ1|. 

 

Definition 1.1 Let θ be a lacunary sequence. 

The number sequence x = {xk} is lacunary 

statistical convergent  or  Sθ-convergent  to  L  

provided  that  for  every  ϵ > 0,   lim  
 1

  |{k ∈ Ir  : 

|xk − L| ≥ ϵ}| = 0. 

In this case, we write Sθ − lim x = L or xk 

→ L(Sθ), and we define Sθ = {x : for some 

L, Sθ − 

lim x = L}. 

Statistical  convergence  of  order  α  (0  <  α       1)  

was  introduced  by  Ç olak  [8],  and  also  

indepen- dently by Bhunia et al. [6], using the 

notion of natural density of order α (where n is 

replaced by n
α
 in the denominator in the 

definition of natural density). It was observed in 

( [6], [8] ) that the behaviour of this new kind of 

convergence was not exactly parallel to that of 

statistical convergence. For a detailed account of 

many more interesting investigations concerning 

statistical convergence of order α, one may refer 

to ( [2], [9], [12]) and [26], where many more 

references can be found. 

Let α be any real number such that 0 < α ≤ 1. 

The α− density of a set K ⊂ N is defined by 

 

 
provided this limit exists. Note that α− 

density of any set reduces to its natural 

density in case α = 1.  In case of natural 

density, it is well known that δ(K) + δ(N − K) 

= 1.  But this result remains no longer true in 

case of α− density, i.e., δ
α
(K) + δ

α
(N − K) = 1 

does not hold, in general. Moreover, as in the 

case of natural density, α− density of a finite 

set is also zero. 
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θ 

— − − 

 
 

Definition 1.2 Let θ = {kr} be a lacunary sequence. The number sequence x = {xk} is said to be 

lacunary statistical bounded or Sθ-bounded if there exists M > 0 such that 

 

 
 

For a given lacunary sequence θ = {kr}, Sθ(b) 

denotes the set of all Sθ-bounded sequences. 

Obvi- ously, Sθ(b) is a linear space with respect 

to co-ordinatewise addition and scalar 

multiplication. 

 

In the present paper we introduce the concept of 

lacunary d−statistical α−convergence and lacunary 

d−statistical α−boundedness and establish the 

realtion between them. 

 

II. MAIN RESULTS 
Definition 2.1 Let (X, d) be a metric space 

and θ = {kr} be a lacunary sequence.  The 

sequence 

x = (xk) in X is said to be S
α,d

−convergent or 

lacunary d−statistically α−convergent if there 

is areal number a ∈ X such that 

 

 
 

If θ = (2
r
) and α = 1, then lacunary d 

statistical α convergence reduces to d 

statistical convergence in a metric space which 

was introduced by Kucukaslan et. al. [21]. 

 

Definition 2.2  Let  (X, d)  be  a  metric  space  
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θ 

— − − 
— − 

— − 

and  θ  = {kr} be  a  lacunary  sequence.   The  

sequence x = (xk) in X is said to be lacunary 

d statistically α  bounded if there is a real 

number a   X and a real number B such that 

 

 
 

The set of all lacunary d statistically α bounded 

sequences  will  be  denoted  by  S
α,d

(b).  If  θ  = 

(2
r
)and α = 1,then lacunary d  statistical α   

boundedness reduces to d   statistical 

boundedness in a metric space which was 

introduced by Kucukaslan et. al. [22]. 

 

Theorem 2.3 Every lacunary d  statistically α  

convergent sequence is lacunary d  statistical α  

bounded; but the converse is not true. 

 

Proof. Let x = (xk) be a lacunary 

d−statistically α−convergent sequence and ε 

> 0 be given. Then there exist a ∈ X such 

that 

 

 
 

Theorem 2.4 Every bounded sequence is 

lacunary d statistically α bounded; but the 

converse is not true. 

Proof. Let x = (xk) in (X, d) be a bounded 

sequence.  Then there exists a real number a 

∈ X  and a real number B such that |{k ∈ Ir : 

d(xk, a) ≥ B}| = 0 for all r ∈ N and so, 

 
It is clear that x = (xk) is not bounded but, it is d−statistically bounded. 

 

Proof. (i) Suppose that Ir ⊂ Jr for all r ∈ N and given condition holds. For given ε > 0, we have 
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lr θ' θ 

 

 

Corollary 2.6 Let θ = (kr) and θ
'  

= (sr) be two lacunary sequences such that Ir ⊂ Jr for all r ∈ N, 

(i) if lim inf
 hr  > 0 then S

d
  ⊂ S

d
 

(ii) if  lim 
 lr  = 1 then S

d
 ⊂ S

d
 . 

 

r→∞ hr 

 

 
 

⊂ S 
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[8] R. Ç olak, Statistical convergence of order 

α, Modern Methods in Analysis and Its 

Applications, New Delhi, India: 

Anamaya Pub, 2010: 121–129. 
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sequence  spaces  of  non-absolute  type  

involving  lacunary sequences, Appl. 

Math. Comput. 219(17) (2013), 9372–

9376. 
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